• +919785333312/14
  • info@letstalkacademy.com


Suraj Prakash Sharma | Ekta Chotia


3.7.         Peroxisome Targeting :

Peroxisomes are single membrane bound small organelles (0.5 - 1mm in diameter) found in nearly all eucaryotic cells. Their existance was 1st discovered by J. Rhodin in 1954 and they were officially consider organelles in 1967 by christion de Duve. Theses organelles mainly occurs in photosynthetic cells of higher plants, algae, liverworts, mosses, ferns and also in fungi. Their number varies from 70-100 per cell. Peroxisomes are rounded bodies whose diameter varies from 0.2-1.5 m. It was believed that peroxisome evolved from bacteria by endosymbiotant, that formed a symbiotic relationship with their host cell. It was believed that the development of this relationship over generation leads to bact evolving as an organelle inside the body. Peroxisomes resemble organelles found in other organisms as they are related to glyoxysomes of plants fungi and also glycosome of kinetoplastids.

Peroxisomes are membrane-bound organelles found in both animal and plant cells that contains and abundance of enzyme for detoxifixing harmful substances and lipid metabolism. That derived from the ER and replicate by fission. This organelle is surrounded by a lipid bilayer membrane which encloses the Crystalloid core. The bilayer is enclosed with plasma membrane which regulates what enters and exits the peroxisome. Peroxisomal matrix proteins are translated in the cytoplasm prior to import. There are at least 32 known peroxisomal proteins, called peroxins which carry out peroxisomal function inside the organelle. The matrix of peroxisome contains peroxide-destroying enzymes (catalases) and peroxide producing enzymes. They prevent the peroxides from acting on the cellular contents.

Key point

Lipid metabolism and chemical detoxification are imp fn of peroxisiomes.

Peroxisomes are responsible for oxidation reactions that break down fatty acids and amino-acids.

Peroxisomes oversee reactions that neutralize free radicals, which cause cellular damage and cell death.

Peroxixomes chemically neutralize poisons through a process that produces large amount of toxic H2O2, which is then converted into H2O and oxygen.

The liver is the organ primarily responsible for detoxifying the blood before it travels throughout the body; as a result, liver cells contain large amount of peroxisomes.

Peroxisome are small organelles bound by a single membrane. Unlike mitochondria and chloroplast ,peroxisome lack DNA and ribosomes. So, all peroxisomal proteins are encoded by nuclear genes,synthesized on ribosomes free in the cytosol and then incorporated into pre-existing or newly generated peroxisomes. Peroxisomes are abundantly in liver cells. Most peroxisomal matrix proteins contain a C-terminal PTS1 targeting sequence; a few have an N-terminal PTS2 targeting sequence. Neither targeting sequence is cleaved after import. All proteins destined for peroxisomal matrix bind to a cytosolic receptor, which differs for PTS1 and PTS2 bearing proteins and then are destined to common import receptor and translocation machinery on the peroxisomal membrane.

Zell-weger syndrome is the disorder in the defect of peroxisome assembly, an autosomal recessive mutation, that occur naturally in human population. In this transport of many proteins into peroxisomal matrix is impaired,  newly remain in cytosol or eventually degraded.

Perspective of the future:

A more detailed understanding of all translocation processes should continue to emerge from genetic and biochemical studies, both in yeast and in mammals.

3.8.         Nucleus

The nucleus is the double membrane occupies about 10% of the total cell volume bound, the largest cellular organelle and the controlling center of eukaryotic animal cell. Cell nuclei contain most of the cell's genetic material, organized as multiple long linear DNA molecules in complex with a protein (Histone), to form chromosome. Eukaryotes usually have single nucleus, but a few cell types, such as mammalian red blood cells have no nuclei and a few other have many.

Paramecia-have two nuclei-macro and micro nucleus. The nuclear envelope is made up of a double membrane st that provides a barrier between the nuclear contents and the cytosol-the inner nuclear membrane and outer nuclear membrane. They are connected together, but their protein compositions are different. The inner nuclear membrane contains integral and peripheral membrane proteins that anchor the nuclear envelope to the lamina, which is a sturdy protein meshwork that gives the nucleus its structure and shape.

The outer nuclear membrane is contiguous with the ER, which is the intracellular compartment where lipids, as well as proteins that are going to be secreated or inserted into membrane are much. The ER and outer nuclear membrane both are studded with ribosomes, which are the enzymes that translate mRNA into protein. The space between the inner and outer nuclear membrane is called perinuclear space, it is continuous with the inside of the ER, so the same processes occur in the ER as in the perinuclear space. Although the nucleus is a separate compartment from the cytosol, many molecules have to go in a out, these included histone, RNA, DNA, ribosome, Polymerase, to factors etc. through nuclear pore.

3.8.1.     Nuclear targeting :

Proteins are not transported through the nuclear membrane but rather through a complex pore called the nuclear pore, which is comprised of-

  • About 100 different proteins
  • Proteins smaller than 20 KDa by selective transport
  • Proteins larger than 20KDa by selective transport (nuclear localization signal; NLS), which is a cluster of 4-8 positively charged amino acids (eg- PKKKRLV)

Usually, nucleus targeted proteins follows two way traffic: in and out

In: Nucleoplasm involves proteins, DNA.

Inside nucleus, DNA and RNA polymerases, transcription factors, histones etc. are targeted across the nuclear pore.

Out: Outside nucleus, mRNA, tRNA, rRNA are generally targeted across the nuclear pore.

Proteins are targeted to the nucleus by a specific amino acids sequence as phenylalanine glycine repeats (FG repeats) while some proteins exits from nuclear requires a nuclear export sequences (NES). Nuclear import & export pathways are mediated by a family of soluble receptor referred to as importin and exportin and collectively called karyopherins (alpha/importin beta1 heterodimer; designated as a and b). The best studied NLS are basic amino acids sequence typically rich in Lys and Arg.

The best characterized nuclear transport sequence are the small hydrophobic leucine rich nuclear export sequences, 1st described in HIV Rev protein ( Crm-1 exportin).An importin binds to its NLS nearing cargo/protein in the cytoplasm and translocates through the NPC into the nucleus. The importin binds Ran–GTP in the nucleus, resulting in cargo varies. The importin–Ran–GTP complex recycles back into the cytosol after translocation to the cytoplasm, GTP hydrolysis on Ran by Ran–GAP.

A gradient of Ran–GTP exists in the cell with Ran–GDP add high concentration in the cytosol and Ran–GTP at a high concentration in the nucleus to maintain the high nuclear concentration of Ran, a dedicated transporter protein NTF2 functions to recycle Ran–GDP continuously back to the nucleus. Ran–GTP is generated in the nucleus by chromatin bound Ran–GEF.

Nuclear Import

Cargo protein (protein which needs to transport from cytoplasm to nucleus) for importin present in cytoplasm. Impotin get responsible to transfer it respective cargo from cytoplasm to nucleus, to accomplish this function binding between cargo and importin takes place, in turn they become capable to make interaction with nuclear pore and as a result pass from its cannel and comes inside nucleus. In nucleus Ran–GTP complex binds to importin and cargo complex which cause conformational change in importin, in turn, importin dissociation with its cargo takes place, as a result cargo get transported to cytoplasm and now translocation of Ran–GTP complex along with importin from the nucleus to the cytoplasm takes place. In cytoplasm Ran binding protein (Ran BP) binds to Ran and cause the separation of Ran–GTP complex from importin, as a result a access generate for GTPase activating protein (GAP) to get bind to Ran–GTP complex, in turn cause hydrolysis of GTP occur and formation of Ran–GDP takes place. Ran–GDP binds to nuclear transport factor which mediate its transfer from cytoplasm to nucleus. In nucleus Ran–GDP complex trigger by guanine nucleotide exchange factor which convert GDP into GTP and formation of Ran–GTP complex takes place, now this complex again start new cycle.

Nuclear Export

In nucleus exportin binds to its respective cargo protein, then this complex binds with Ran–GTP complex and along with Ran–GTP complex, exportin and its cargo get diffuse from the nuclear pore and reach into the cytoplasm. In cytoplasm GAP protein binds to Ran–GTP complex and causes hydrolysis of GTP in turn cargo get release in nucleus. After that Ran–GDP move into the nucleus with a ligand which it takes from cytoplasm and in nucleus it again get converted in to Ran–GTP by the action of GEF and release is ligand in nucleus.

Page no. 225